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Selection of optimum process conditions in combinatorial microreactors is essential if the combinatorial
synthesis process is to be correlated with the synthesis process on a more conventional scale and the materials
are to have the desired chemical properties. We have developed a new methodology for the high-throughput
multiparameter optimization of polymerization reaction conditions in arrays of microreactors. Our strategy
is based on the application of nondestructive spectroscopic techniques to measure chemical properties of
polymers directly in individual microreactors followed by the multivariate spectral descriptor analysis for
rapid determination of the optimal process conditions. We have demonstrated our strategy in the high-
throughput multiparameter optimization of process conditions in thin-film melt polymerization reactions
performed in 96-microreactor arrays for combinatorial screening of new polymerization catalysts. The
combinatorial polymerization system was optimized for the best processing parameters using a set of input
variables that included reactant parameters (relative amounts of starting components and catalyst loading)
and processing variables (reaction time, reaction temperature, and inert gas flow rate). The measured output
parameters were the chemical properties of materials and reproducibility of the material formation in replicate
polymerizations in microreactors. Spatially resolved nondestructive evaluation of polymer formation was
performed directly in individual microreactors and provided information about the spatial homogeneity of
polymers in microreactors. It showed to be another powerful indicator of the reproducible polymerization
process on the combinatorial scale. Although the methodology described here was implemented for high-
throughput optimization of polymerization conditions, it is more general and can be further implemented
for a variety of applications in which optimization of process parameters can be studied in situ or off-line
using spectroscopic and other tools.

Introduction

At present, combinatorial and high-throughput methods
are finding applications beyond the pharmaceutical industry
for discovery of materials in chemistry and materials science.
These materials include luminescent and magnetoresistive
compounds, catalysts, polymers, high-temperature supercon-
ductors, and many others.1-3 High-throughput methods also
have been employed for optimization of materials composi-
tions. Recent examples include optimization of homogeneous
and heterogeneous catalysts,4,5 multicomponent inorganic
films,6 and nanoscale materials.7,8

In addition to discovery and optimization of new chemical
compositions, high-throughput approaches can provide im-
portant time savings in optimization of process parameters
of materials fabrication similar to optimization of pharma-
ceutically relevant reactions9 through parallel reactions and
automation.10,11 However, until now, high-throughput opti-
mization of process parameters has not been explored in
much detail. Limited studies of asingle-parameter variation
of process conditions include polymer blend-phase behavior

at different temperatures,12 temperature-modulated dewetting
effects,13 and effects of different process conditions on end-
use performance of combinatorial arrays of organic coat-
ings.14 Selection of optimum process conditions in combi-
natorial microreactors is essential if the combinatorial
synthesis process is to be correlated with the synthesis
process on a more conventional scale and the materials are
to have desired chemical properties. The reaction optimiza-
tion process is a tradeoff between the desire for best
performance and least experimental investment.11 Thus, it
is highly desirable to increase the optimization throughput
by performing parallel reactions at different process condi-
tions and by rapid nondestructive measurement of chemical
properties of materials.

In this report, we demonstrate our strategy in the high-
throughputmultiparameteroptimization of process condi-
tions in thin-film melt polymerization reactions performed
in 96- microreactor arrays for combinatorial screening of new
polymerization catalysts. In the development of melt-
polymerization polymers using a combinatorial chemistry
methodology,15,16 it is critical to find the optimal process* Corresponding author. E-mail: Potyrailo@crd.ge.com.
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parameters. Unlike the traditional melt-polymerization scheme
that involves stirring of the reaction components under
vacuum,17-20 the combinatorial approach is based on the thin-
film melt polymerization method at atmospheric pressure and
without stirring.15,16For the high-throughput optimization of
process conditions of thin-film melt polymerization reactions
and further screening of polymer compositions, we developed
an automated analytical spectroscopic system and coupled
it with a multivariate spectral descriptor analysis method.
The system automatically measures fluorescence spectra of
solid polymerized materials in each microreactor. The
multivariate data analysis method computes the spectral
descriptors related to the material properties and permits the
determination of process conditions that provide the required
reaction performance.

As a result, the combinatorial polymerization system was
optimized for the best processing parameters using a set of
input variables that included reactant parameters (reaction
volume, relative amounts of starting components and catalyst
loading) and processing variables (reaction time and inert
gas flow rate). The measured output parameters were the
chemical properties of materials and variability of the
material formation within each of the microreactors as
measured noninvasively using optical spectroscopy.

Approach For High-Throughput Multiparameter
Reaction Optimization

Our high-throughput multiparameter reaction optimization
methodology is schematically described in Figure 1. The
approach included fabrication of materials arrays over a wide
range of process conditions, application of nondestructive

measurement techniques to collect optical spectra from the
fabricated materials, multivariate data analysis to extract the
desired spectral descriptors from the spectra, correlation of
the variation in these spectral descriptors with the variation
in process conditions, and identification of the levels of
process conditions that satisfy two predetermined reaction
requirements. The first requirement included an identification
of process conditions that provided the largest material
differentiation at a constant ratio of two reaction components
A and B (ratio A/B) and increasing concentration of the third
reaction component C. The second requirement included
minimum reaction variability when reactions were performed
in different microreactors under identical process conditions.

The process conditions included intra- and interarray
variable parameters. Intra-array parameters included reaction
volume, ratio of reaction component A to reaction component
B (ratio A/B), and concentration of component C. These
parameters were varied at different levels across multiple
elements of the 96-microreactor array within each experi-
ment. Interarray parameters included flow rate of the inert
gas and dwell time. These parameters were varied at different
levels in different experiments. The process conditions and
their levels are listed in Table 1. These process conditions
were selected on the basis of previous work on this type of
polymerization reaction.16

Fluorescence spectroscopy was selected as the measure-
ment technique because it was shown previously that
fluorescence analysis provides selective chemical determina-
tions in a variety of polymers.21-29 Importantly, the spectral
features of bisphenol A polycarbonate used in this study were

Figure 1. Methodology for the high-throughput reaction optimization using nondestructive spectroscopic measurements coupled with the
pattern recognition of spectral descriptors under variable process conditions.
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found to be well-correlated with the chemical properties of
interest.30-33

Fluorescence spectra were collected under excitation
conditions that were optimized to correlate the emission
spectral features with parameters of interest. Principal
components analysis (PCA) was further used to extract the
desired spectral descriptors from the spectra.34,35 The PCA
method was used to provide a pattern recognition model that
correlated the features of fluorescence spectra with chemical
properties, such as polymer molecular weight and the
concentration of the formed branched side product, also
known as Fries product,32 which were in turn related to
process conditions.33 The correlation of the variation in these
spectral descriptors with the variation in process conditions
was performed by analyzing the PCA scores. The scores were
analyzed for their Euclidean distances between different
process conditions as a function of catalyst concentration.
Further, reaction variability was similarly assessed by
analyzing the variability between groups of scores under
identical process conditions. As a result, the most appropriate
process conditions were those that provided the largest
differentiation between materials as a function of catalyst
concentration and the smallest variability in materials
between replicate polymerization reactions.

Experimental Section

Process Conditions of Parallel Melt Polymerization in
96-Microreactor Arrays. Details of the parallel melt po-
lymerization in 96-microreactor arrays have been reported
previously.15,16 Briefly, bisphenol A polycarbonate was
prepared by melt polymerization according to well-known
literature methods.16-20 The starting reaction components
included diphenyl carbonate (component A) and bisphenol
A (component B) monomers obtained from GE Plastics and
a catalyst (NaOH, component C) obtained from Aldrich. The

reactions were performed in glass 96-well microtiter plates
that served as 96-microreactor arrays16 in a sequence of steps
of increasing temperature19,20 and a maximum temperature
of 280 °C. Multiple melt polymerization reactions were
performed using mixtures of A and B at different ratios with
different amounts of catalyst C. Catalyst amounts were
expressed as certain fractions of 10-5 mol of catalyst per
mole of component B. In process optimization experiments,
polymeric materials were fabricated in five microreactor
arrays under different intra- and interarray reaction param-
eters as illustrated in Table 1. The combinations of these
parameters were provided from design of experiments.
Ranges of these parameters were selected to preserve the
rank order of a variety of control catalysts from a lab-scale
to combinatorial reactors.15,19 All parameters described
in Table 1 are considered process conditions (including
chemical parameters such as ratio A/B and concentration
of catalyst C), because once chosen, they are not altered
throughout screening of new catalysts.15

Replicates (n ) 8) of similar conditions in each 96-
microreactor array were randomized in groups of four to
reduce possible effects of any position-induced variability.
In addition, one set of eight microreactors in each micro-
reactor array was always left blank, and one of the micro-
reactors contained a thermocouple. Figure 2A illustrates one
of the 96-microreactor arrays with solid polymeric materials
after a parallel melt-polymerization experiment.

High-Throughput Spectroscopic Analysis Setup.An
experimental setup for an automated acquisition of fluores-
cence spectra from the materials in 96-microreactor arrays
is shown in Figure 2B. Fluorescence measurements of
polymers in each microreactor were performed through the
glass bottom of the microreactors using a white light source,
a monochromator, a portable spectrofluorometer, and a
translation stage. The white light source (450-W Xe arc lamp,

Table 1. Variable Input Parameters (process conditions) for High-throughput Multiparameter Optimization of Polymerization
Conditions of Combinatorial 96-microreactor Arrays

parameter type parameter name studied levels of parameters

intra-array reaction volume (µL) 150, 200, 250
ratio of starting components A/B (mol/mol) 1, 1.2, 1.4
amount of catalyst C (10-5 mole C/mole B) 0.5, 1, 2, 4

interarray flow rate of inert gas (L/min) 4, 6, 8
dwell time (min) 10, 20, 30

Figure 2. Optimization of multiple process parameters in 96-microreactor arrays: (A) reflected-light image of a 96-microreactor array
with solid polymeric materials after a parallel melt-polymerization experiment and (B) setup for an automated acquisition of fluorescence
spectra from the polymers in the microreactor arrays.
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SLM Instruments, Inc., Urbana, IL, model FP-024) was
coupled to the monochromator (SLM Instruments, Inc.,
model FP-092) for selection of the excitation wavelength
and further focused into one of the arms of a “six-around-
one” bifurcated fiber-optic reflection probe (Ocean Optics,
Inc., model R400-7-UV/VIS). Emission light from the
polymeric material in each microreactor was collected when
the common end of the fiber-optic probe was positioned near
the bottom of the reactor at an angle 45° to the normal to
the surface. The second arm of the probe was coupled to
the portable spectrofluorometer (Ocean Optics, Inc., model
ST2000) through an in-line optical filter holder (Ocean
Optics). The holder contained a long-pass optical filter to
block excitation light from entering the spectrofluorometer.
The spectrofluorometer was equipped with a 200-µm slit,
600-grooves/mm grating blazed at 400 nm and covering the
spectral range from 250 to 800 nm with efficiency greater
than 30%, and a linear CCD-array detector. Fluorescence
spectra reported here were not corrected by the spectral
response of the optical system.

For fluorescence analysis of solid polymers, each micro-
reactor array was arranged on anX-Y translation stage, and
the common end of the fiber optic probe was held stationary
to measure emission spectra. The size of the excitation beam
of the fiber-optic probe was in the range from 1 to 4 mm,
depending on the probe-microreactor distance. Data acquisi-
tion and automatic control of theX-Y translation stage were
achieved with a computer using a program written in
LabVIEW (National Instruments, Austin, TX). The program
provided adequate control of the data acquisition parameters
and real-time communication with the translation stage.

Data Processing Algorithms.Analysis of fluorescence
spectra was performed using KaleidaGraph software (Syn-
ergy Software, Reading, PA) and PLS_Toolbox software
(Eigenvector Research, Inc., Manson, WA) operated with
Matlab software (The Mathworks Inc., Natick, MA). Prior
to PCA, fluorescence spectra from five 96-microreactor
arrays were appropriately preprocessed. The preprocessing
included a baseline subtraction, normalization of spectra by
the fluorescence intensity at 500 nm, selection of an
appropriate spectral range for the PCA, and mean-centering
the spectra. The spectra from the empty and thermocouple-
containing microreactors (see section 3.1) were excluded
from the spectral descriptor analysis.

Upon performing the PCA, a spectral descriptor was
determined for each fluorescence spectrum. The spectral
descriptor was represented as a vector in PCA space. This
vector was described by a unique combination of the
respective scores of principal components. The spectral
descriptors from materials produced under the same process-
ing conditions were considered as a clusterS in the PCA
space without the use of automated clustering algorithms.34-36

Each clusterS was represented by its mean and standard
deviation with respect tokth principal component. The
Euclidean distanceE between two clusters of spectral
descriptors was calculated as

wherei and j are indices of clustersSi andSj, respectively;
Eij is the Euclidean distance between these clusters;Wk is
the weighting factor (equal to captured percent variance) of
thekth principal component; andn is the number of principal
components used for multivariate analysis.

Calculations of means and standard deviations ofEij

according to eq 1 were performed with a Monte Carlo
simulation program (Crystal Ball, Decisioneering, Inc.,
Denver, CO). For these simulations, means and standard
deviations of Ski and Skj were initially calculated from
multiple spectral descriptors of each cluster. Further, both
the mean of each cluster and its standard deviation (assuming
the normally distributed error) were entered into the program.
Finally, 10 000 iterations were performed on a 700-MHz
personal computer to calculate the mean and standard
deviation for a givenEij .

From a variety of available approaches for cluster analy-
sis,36 we selected analysis of Euclidean distances because it
provides the information about both the distance between
clusters and the spread of each cluster. Further, although it
is possible to perform calculations of Euclidean distances
on raw spectra, we performed the PCA first to reduce the
noise in the data.

Results and Discussion

Characterization Conditions. Fluorescence analysis pro-
vided an adequate selectivity of chemical determinations in
bisphenol A polycarbonate.30-33 By changing both excitation
and emission wavelengths, an excitation-emission fluores-
cence map was constructed that revealed different species.
By optimizing the excitation wavelength, fluorescence can
be collected from only certain species, and the fluorescence
signal from interfering species can be greatly reduced.37 In
initial experiments, spectral regions were identified from
experimental excitation-emission maps that were correlated
with chemical properties of interest,31,32 which were in turn
related to process conditions.33 A typical excitation-emission
fluorescence map of one of the polymeric compositions is
presented in Figure 3. It illustrates that while several
fluorescent species contribute to the fluorescence emission,
it is straightforward to identify regions for accurate analyte
quantitation by selecting certain excitation and emission
conditions. During these initial experiments, an appropriate
excitation wavelength of 340 nm was selected for preferential
excitation of species of interest in the polymer.

Determination of Key Process Parameters.For the
determination of the key process parameters and their
respective values, fluorescence spectra from five 96-micro-
reactor arrays were collected and processed as described in
the Data Processing Algorithms section. The normalized
spectra are presented in Figure 4. The spectral features of
the polymeric materials in the microreactors contained a
wealth of information about the chemical properties of
materials. This information was extracted using multivariate
analysis, such as PCA. According to the PCA results, the
first two principal components (PCs) accounted for>95%
of the spectral variation among all spectra. Thus, the first
two PCs were used for an adequate description of the
fluorescence spectra. Results of the principal components

Eij ) {∑
1

n

(Wk(Ski - Skj))
2}1/2 (1)
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analysis of the spectra from all 96-microreactor arrays as a
function of concentration of catalyst C are presented in Figure
5. This scores plot demonstrates the existence of the major
general trend in the spectral descriptors where the variation
in scores of both PCs strongly depends on concentration of
component C for all screened process parameters.

To determine other key process variables besides the
concentration of component C that affect performance of the
combinatorial thin-film polymerizations, PCA results were
also analyzed as a function of individual intra- and interarray

variables. Figure 6 demonstrates PCA results as a function
of variable volume, ratio A/B, flow rate, and dwell time.
These data illustrate that for two intra-array parameters, such
as the sample volume and ratio A/B, the significant clustering
of spectral descriptors was observed only as a function of
the ratio A/B. For two interarray parameters, such as flow
rate and dwell time, the clustering of spectral descriptors
was insignificant.

We further performed a more detailed analysis in which
the spectral descriptors inindiVidual 96-microreactor arrays
were considered. The data were analyzed as a function of
catalyst concentration, reaction volume, and ratio A/B at
different flow rates of inert gas and dwell times. Such
analysis evaluated the effect of these process parameters on
the properties of polymerized materials and the reproduc-
ibility of replicate polymerizations in different 96-micro-
reactor arrays. The minimum reaction variability was char-
acterized by the smallest spread in clustering of spectral
descriptors. It was found that the variation of flow rate of
inert gas and dwell time affected the reproducibility of
replicate polymerizations. Changes of reaction volume did
not significantly affect the clustering of spectra for any of
the interarray conditions. The most pronounced dependence
of spectral features was provided by the variation in the ratio
A/B.

This dependence of spectral features on variable levels of
intra-array (ratio A/B and concentration of catalyst C) and
interarray (flow rate and dwell time) process parameters is
illustrated in Figure 7. In this Figure, spectral descriptors of
all materials are presented similar to Figure 5. However, color
codes and shapes are highlighted for materials from only
two representative microreactor arrays. Spectral descriptors
of polymers in a 96-microreactor array that were polymerized
under an 8 L/min flow rate of inert gas and 10-min dwell
time are color- and shape-coded in Figure 7A. Spectral
descriptors of polymers in another 96-microreactor array that
were polymerized under a 6 L/min flow rate of inert gas
and 20-min dwell time are color- and shape-coded in Figure
7B. Spectral descriptors from the rest of 96-microreactor
arrays are shown as gray circles. Different colors represent
different concentrations of catalyst C. Different shapes of
the markers represent variable ratios A/B. Under certain

Figure 3. Typical excitation-emission fluorescence map of solid bisphenol A polycarbonate produced by melt-polymerization.

Figure 4. Normalized fluorescence spectra of the polymeric
materials made in the 96-microreactor arrays under all experimental
conditions.

Figure 5. Results of the principal components analysis of the
spectra of the polymeric materials made in the 96-microreactor
arrays under all experimental conditions as a function of concentra-
tion of catalyst C.
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conditions (see Figure 7A), there is lack of sufficient
discrimination among materials. This is evident from the fact
that all data points are tightly clustered without significant
separation. Other process conditions (see Figure 7B) are more
favorable for two reasons: First, the materials are well-
separated as a function of catalyst concentration. Second,
within a certain concentration, materials are further separated
by the different ratio A/B. For comparison, Figure 8

illustrates almost no dependence of spectral descriptors on
variable levels of reaction volume under different concentra-
tions of catalyst C, flow rates, and dwell times for the same
two microreactor arrays. Thus, the process conditions of
primary importance were identified to be the ratio of starting
components A/B, concentration of catalyst C, flow rate of
inert gas, and dwell time, whereas reaction volume did not
significantly affect the polymerization performance.

Figure 6. Results of the principal components analysis of the spectra of the polymeric materials made in the 96-microreactor arrays with
variable intra-array (A and B) and interarray (C and D) parameters: (A) volume, (B) ratio A/B, (C) flow rate, and (D) dwell time. Levels:
asterisks, smallest; plus, medium; X, largest. For values, see Table 1.

Figure 7. Dependence of spectral descriptors on ratio A/B under interarray conditions: (A) 8 L/min flow rate of inert gas and 10-min
dwell time and (B) 6 L/min flow rate of inert gas and 20-min dwell time.
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Determination of Optimal Levels of Process Conditions.
To determine the optimal levels of the identified process
conditions, a more detailed evaluation was performed.
Euclidean distances between different clusters of spectral
descriptors and the uncertainty in these distances were
computed using eq 1. Calculations were performed between
spectral descriptors associated with materials produced with
different amounts of catalyst and ratios A/B in all 96-
microreactor arrays. Results of these calculations for all
microreactor arrays used for optimization studies are sum-
marized in Table 2.

Figure 9 illustrates two representative plots of the results
of calculation of the Euclidean distance of spectral descriptors
shown in Figure 7. As discussed in the Approach For High-
Throughput Multiparameter Reaction Optimization section,
the largest Euclidean distances indicate the best conditions
for material differentiation. Thus, the best interarray condi-
tions were found to be a 6 L/min flow rate of inert gas and
20-min dwell time. The best intra-array conditions were a
combination of the catalyst concentration of 2-4 equiv and
ratio A/B of 1.2-1.4 (Figure 9B). Results for the reaction
variability for these microreactor arrays are presented in
Figure 10. The smallest relative standard deviation (RSD)
of spectral features indicates the best reaction reproducibility.
This figure illustrates that the smallest RSD was achieved
with the conditions of microreactor array processed under a
6 L/min flow rate of inert gas and 20-min dwell time and a
ratio A/B of 1.2 over the concentration range of catalyst from
2 to 4.

Spectral Features Under Nonoptimized And Optimized
Process Conditions.Optimization of process parameters
resulted not only in the improved reproducibility of replicate
polymerization reactions and improved discrimination be-
tween materials with different levels of catalyst C, but also

Figure 8. Dependence of spectral descriptors on reaction volume under interarray conditions: (A) 8 L/min flow rate of inert gas and
10-min dwell time and (B) 6 L/min flow rate of inert gas and 20-min dwell time.

Figure 9. Results of calculation of Euclidean distances of spectral descriptors in polymer arrays produced under interarray conditions: (A)
8 L/min flow rate of inert gas and 10-min dwell time and (B) 6 L/min flow rate of inert gas and 20-min dwell time. Maximum Euclidean
distance indicates best conditions for material differentiation as a function of concentration of catalyst C.

Table 2. Means of the Euclidean Distances (ED) and
Standard Deviations (SD) of Spectral Clusters

ratio A/B

1.0 1.2 1.4

array
concn
of C

ED
mean

ED
SD

ED
mean

ED
SD

ED
mean

ED
SD

1 0.5 0.303 0.211 0.121 0.0872 0.699 0.511
1 0.275 0.185 0.105 0.0761 0.518 0.379
2 0.271 0.18 0.268 0.172 0.517 0.366
4 0.234 0.149 0.570 0.165 0.581 0.391

2 0.5 0.687 0.499 0.199 0.146 0.297 0.218
1 0.526 0.375 0.178 0.131 0.279 0.201
2 0.504 0.357 0.282 0.167 0.236 0.161
4 0.493 0.347 0.373 0.170 0.271 0.173

3 0.5 0.0830 0.0582 0.170 0.122 0.454 0.337
1 0.0683 0.0467 0.146 0.101 0.385 0.281
2 0.132 0.0694 0.521 0.158 0.627 0.389
4 0.284 0.0982 0.768 0.189 0.741 0.385

4 0.5 0.149 0.107 0.117 0.0842 0.403 0.296
1 0.164 0.113 0.129 0.0836 0.410 0.297
2 0.116 0.076 0.190 0.117 0.388 0.265
4 0.173 0.108 0.384 0.125 0.553 0.333

5 0.5 0.116 0.0848 0.139 0.103 0.534 0.392
1 0.206 0.0984 0.115 0.0836 0.557 0.400
2 0.184 0.106 0.388 0.212 0.423 0.300
4 0.177 0.114 0.363 0.168 0.419 0.278
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in the improved homogeneity of polymers within individual
microreactors. Typical examples of fluorescence spectra from
polymer materials produced in replicate microreactors under
nonoptimized and optimized conditions are presented in
Figure 11. This comparison is performed for materials with
increasing levels of catalyst C and constant levels of ratio
A/B and volume. These plots illustrate that upon finding the
optimal reaction conditions, the reproducibility of replicate
polymerization reactions is improved. In addition, the
discrimination between materials of increasing concentration
of component C is also improved, as evidenced by the more
reproducible fluorescence spectra under identical process
conditions.

Under the optimized reaction conditions, the relative
importance of variable reaction volume and reaction ratio
A/B was confirmed. No significant difference in materials

properties was found upon changing of the reaction volume
under optimized reaction conditions, as illustrated in Figure
12A. In contrast, the variation in ratio A/B had a pronounced
effect (see Figure 12B), as predicted by the descriptor
analysis.

The high spatial polymer homogeneity in individual
microreactors is another powerful indicator of the reproduc-
ible polymerization process on the combinatorial scale. This
variability is determined as differences in measured fluo-
rescence spectra that are caused by the spatial variation in
the chemical composition in the formed polymer within each
microreactor. Figure 13 illustrates the fluorescence spectra
of polymers within individual microreactors under non-
optimized and optimized polymerization conditions. The
evaluations were performed by measuring multiple regions
of polymer in each microreactor. The small beam size (∼1-

Figure 10. Results of calculation of reaction variability as %RSD of PC1 and PC2 scores of spectral descriptors in polymer arrays produced
under interarray conditions: (A) 8 L/min flow rate of inert gas and 10-min dwell time and (B) 6 L/min flow rate of inert gas and 20-min
dwell time. Smallest relative standard deviation (RSD) of spectral features indicates best reaction reproducibility.

Figure 11. Typical material variability under reaction conditions: (A) 8 L/min flow rate of inert gas and 10-min dwell time and (B) 6
L/min flow rate of inert gas and 20-min dwell time. Intra-array materials parameters: ratio A/B) 1.2, reaction volume) 200 µL.

Figure 12. Effects of (A) reaction volume and (B) ratio A/B under optimized reaction conditions of 6 L/min flow rate of inert gas and
20-min dwell time. Intra-array materials parameters: (A) ratio A/B) 1.0, concentration of catalyst [C]) 1.0; (B) reaction volume) 200
µL, concentration of catalyst [C]) 1.0.

Optimization of 96-Microreactor Arrays Journal of Combinatorial Chemistry, 2003, Vol. 5, No. 115



mm diameter) permitted the detailed evaluation of the spatial
distribution of polymer formation in each of the microreactors
in the array. These measurements of variability can be
provided only on a solid material directly in each micro-
reactor, because this information is lost after dissolving the
polymer for traditional GPC analysis.

Conclusions

The combinatorial and high-throughput experimentation
infrastructure developed for screening of new materials31,38,39

has been implemented for the high-throughput optimization
of process parameters of polymerization reactions in 96-
microreactor arrays. While the system described here was
implemented for high-throughput optimization of polymer-
ization conditions, this methodology is more general and can
be further applied for a variety of other applications in which
optimization of process parameters can be studied in situ or
off-line using optical spectroscopic and other tools. For
example, this approach can also be used for optimization of
synthesis reactions and derivatizations, in vapor, condensed-
phase, or heterogeneous systems. Similarly, since extruders
are often represented as a series of continuous unit chemical
operations, the output of an extruder can be optimized against
its typical process parameters (i.e., screw speed, zone
temperatures, feed rates, vacuum levels, etc). The number
of process parameters for optimization can be easily increased
to include other parameters of interest. The major limitations
most often are development of measurement techniques with
good sensitivity and correlation with the properties of interest
and obtaining adequate reproducibility of the measurements
and the reactions. In addition, more complicated optimization
procedures can be employed to correlate the process param-
eters with the end-use performance40 on the basis of, for
example, genetic algorithms.
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