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Selection of optimum process conditions in combinatorial microreactors is essential if the combinatorial
synthesis process is to be correlated with the synthesis process on a more conventional scale and the materials
are to have the desired chemical properties. We have developed a new methodology for the high-throughput
multiparameter optimization of polymerization reaction conditions in arrays of microreactors. Our strategy

is based on the application of nondestructive spectroscopic techniques to measure chemical properties of
polymers directly in individual microreactors followed by the multivariate spectral descriptor analysis for
rapid determination of the optimal process conditions. We have demonstrated our strategy in the high-
throughput multiparameter optimization of process conditions in thin-film melt polymerization reactions
performed in 96-microreactor arrays for combinatorial screening of new polymerization catalysts. The
combinatorial polymerization system was optimized for the best processing parameters using a set of input
variables that included reactant parameters (relative amounts of starting components and catalyst loading)
and processing variables (reaction time, reaction temperature, and inert gas flow rate). The measured output
parameters were the chemical properties of materials and reproducibility of the material formation in replicate
polymerizations in microreactors. Spatially resolved nondestructive evaluation of polymer formation was
performed directly in individual microreactors and provided information about the spatial homogeneity of
polymers in microreactors. It showed to be another powerful indicator of the reproducible polymerization
process on the combinatorial scale. Although the methodology described here was implemented for high-
throughput optimization of polymerization conditions, it is more general and can be further implemented
for a variety of applications in which optimization of process parameters can be studied in situ or off-line
using spectroscopic and other tools.

Introduction at different temperaturédtemperature-modulated dewetting

At present, combinatorial and high-throughput methods effects!® and effects of different process conditions on end-
are finding applications beyond the pharmaceutical industry use performance of combinatorial arrays of organic coat-
for discovery of materials in chemistry and materials science. ings** Selection of optimum process conditions in combi-
These materials include luminescent and magnetoresistivenatorial microreactors is essential if the combinatorial
compounds, catalysts, polymers, high-temperature superconsynthesis process is to be correlated with the synthesis
ductors, and many othets? High-throughput methods also  process on a more conventional scale and the materials are
have been employed for optimization of materials composi- to have desired chemical properties. The reaction optimiza-
tions. Recent examples include optimization of homogeneoustion process is a tradeoff between the desire for best
and heterogeneous cataly$tsmulticomponent inorganic  performance and least experimental investrd&ithus, it
films,® and nanoscale material8. is highly desirable to increase the optimization throughput

In addition to discovery and optimization of new chemical by performing parallel reactions at different process condi-

compositions, high-throughput approaches can provide im- tions and by rapid nondestructive measurement of chemical
portant time savings in optimization of process parameters properties of materials.

of materials fabrication similar to optimization of pharma-

ceu'ucally reolti/ant react|oP|$r.1rough pgrallel reactions an_d throughputmultiparameteroptimization of process condi-
automation'®!* However, until now, high-throughput opti- . S o :
L . tions in thin-film melt polymerization reactions performed
mization of process parameters has not been explored in. . . ) )
S : ; I in 96- microreactor arrays for combinatorial screening of new
much detail. Limited studies of gingle parameter variation

of process conditions include polymer blend-phase behaviorpolymer!zat!on catalysts. Ip the devglopmgnt of ”.‘e"'
polymerization polymers using a combinatorial chemistry

* Corresponding author. E-mail: Potyrailo@crd.ge.com. methodologyt>1¢ it is critical to find the optimal process

In this report, we demonstrate our strategy in the high-

10.1021/cc020062g CCC: $25.00 © 2003 American Chemical Society
Published on Web 12/12/2002



Optimization of 96-Microreactor Arrays Journal of Combinatorial Chemistry, 2003, Vol. 5, No. 2

Optimization goal:

To determine reaction conditions that provide
1) Maximum material differentiation with increase of catalyst concentration
2) Maximum reaction reproducibility

4L

Variable input parameters (process conditions): High-throughput analysis approach:
Intra-array - Reaction volume Non-invasive spectroscopic analysis coupled with
- Ratio of starting components A/B pattern recognition of spectral features

- Concentration of component C

Inter-array - Flow rate of inert gas . .
nler-array ow rat g - Nondestructive spectroscopic measurement

- Duelltime EJ > - Generation of spectral descriptors from
000000000000 a? spectral data
888888888888 - Correlation of spectral descriptors with
888888888888 process conditions

- |dentification of levels of process conditions
888888888888 that satisfy the predetermined reaction

000000000000 requirements

Optimization results:

Maximum material differentiation determined by maximum Euclidean distance
Maximum reaction reproducibility determined by minimal spectral differences

Figure 1. Methodology for the high-throughput reaction optimization using nondestructive spectroscopic measurements coupled with the
pattern recognition of spectral descriptors under variable process conditions.

parameters. Unlike the traditional melt-polymerization scheme measurement techniques to collect optical spectra from the
that involves stirring of the reaction components under fabricated materials, multivariate data analysis to extract the
vacuumt’~2°the combinatorial approach is based on the thin- desired spectral descriptors from the spectra, correlation of
film melt polymerization method at atmospheric pressure and the variation in these spectral descriptors with the variation
without stirring*>*6For the high-throughput optimization of  in process conditions, and identification of the levels of
process conditions of thin-film melt polymerization reactions process conditions that satisfy two predetermined reaction
and further screening of polymer compositions, we developed requirements. The first requirement included an identification
an automated analytical spectroscopic system and couplecbf process conditions that provided the largest material
it with a multivariate spectral descriptor analysis method. differentiation at a constant ratio of two reaction components
The system automatically measures fluorescence spectra oA and B (ratio A/B) and increasing concentration of the third
solid polymerized materials in each microreactor. The reaction component C. The second requirement included
multivariate data analysis method computes the spectralminimum reaction variability when reactions were performed
descriptors related to the material properties and permits thein different microreactors under identical process conditions.
determination of process conditions that provide the required  1pq process conditions included intra- and interarray
reaction performance. - _ o variable parameters. Intra-array parameters included reaction
As aresult, the combinatorial polymerization system was i me, ratio of reaction component A to reaction component
optimized for the best processing parameters using a set ofg (ratio A/B), and concentration of component C. These
input variables that included reactant parameters (reactionparameters were varied at different levels across multiple
volume, relative amounts of starting components and CatalyStelements of the 96-microreactor array within each experi-

loading) and processing variables (reaction time and inert ment. Interarray parameters included flow rate of the inert

gas flp W rate). The measured_output parametgrs were thegas and dwell time. These parameters were varied at different
chemical properties of materials and variability of the

. . o , levels in different experiments. The process conditions and
material formqﬂon ywthm (_each O.f the microreactors as their levels are listed in Table 1. These process conditions
measured noninvasively using optical spectroscopy. were selected on the basis of previous work on this type of

Approach For High-Throughput Multiparameter polymerization reactioff
Reaction Optimization Fluorescence spectroscopy was selected as the measure-
Our high-throughput multiparameter reaction optimization ment technique because it was shown previously that
methodology is schematically described in Figure 1. The fluorescence analysis provides selective chemical determina-
approach included fabrication of materials arrays over a wide tions in a variety of polymers:—2° Importantly, the spectral
range of process conditions, application of nondestructive features of bisphenol A polycarbonate used in this study were
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Table 1. Variable Input Parameters (process conditions) for High-throughput Multiparameter Optimization of Polymerization
Conditions of Combinatorial 96-microreactor Arrays

parameter type parameter name studied levels of parameters
intra-array reaction volume«[() 150, 200, 250
ratio of starting components A/B (mol/mol) 1,1.2,1.4
amount of catalyst C (1@ mole C/mole B) 05,1,2,4
interarray flow rate of inert gas (L/min) 4,6,8
dwell time (min) 10, 20, 30

Mono- || Xe-arc
chromator || lamp

Optical fiber

Shutter
XY stage Spectro-
flucrometer
) _ Long-pass
Fiber-optic optical filter
prabe

0000000

96-microreactor array controller

< i ~
>, XY stage Computer

Figure 2. Optimization of multiple process parameters in 96-microreactor arrays: (A) reflected-light image of a 96-microreactor array
with solid polymeric materials after a parallel melt-polymerization experiment and (B) setup for an automated acquisition of fluorescence
spectra from the polymers in the microreactor arrays.

found to be well-correlated with the chemical properties of reactions were performed in glass 96-well microtiter plates
interest30-33 that served as 96-microreactor arrdys a sequence of steps
Fluorescence spectra were collected under excitationof increasing temperatuf&® and a maximum temperature
conditions that were optimized to correlate the emission of 280 °C. Multiple melt polymerization reactions were
spectral features with parameters of interest. Principal performed using mixtures of A and B at different ratios with
components analysis (PCA) was further used to extract thedifferent amounts of catalyst C. Catalyst amounts were
desired spectral descriptors from the spettfaThe PCA expressed as certain fractions of 10nol of catalyst per
method was used to provide a pattern recognition model thatmole of component B. In process optimization experiments,
correlated the features of fluorescence spectra with chemicalpolymeric materials were fabricated in five microreactor
properties, such as polymer molecular weight and the arrays under different intra- and interarray reaction param-
concentration of the formed branched side product, also eters as illustrated in Table 1. The combinations of these
known as Fries produét, which were in turn related to  parameters were provided from design of experiments.
process condition®.The correlation of the variation in these Ranges of these parameters were selected to preserve the
spectral descriptors with the variation in process conditions rank order of a variety of control catalysts from a lab-scale
was performed by analyzing the PCA scores. The scores werdo combinatorial reactor’$:*® All parameters described
analyzed for their Euclidean distances between differentin Table 1 are considered process conditions (including
process conditions as a function of catalyst concentration.chemical parameters such as ratio A/B and concentration
Further, reaction variability was similarly assessed by of catalyst C), because once chosen, they are not altered
analyzing the variability between groups of scores under throughout screening of new catalysts.
identical process conditions. As a result, the most appropriate Replicates if = 8) of similar conditions in each 96-
process conditions were those that provided the largestmicroreactor array were randomized in groups of four to
differentiation between materials as a function of catalyst reduce possible effects of any position-induced variability.
concentration and the smallest variability in materials In addition, one set of eight microreactors in each micro-

between replicate polymerization reactions. reactor array was always left blank, and one of the micro-
) ) reactors contained a thermocouple. Figure 2A illustrates one
Experimental Section of the 96-microreactor arrays with solid polymeric materials
Process Conditions of Parallel Melt Polymerization in after a parallel melt-polymerization experiment.
96-Microreactor Arrays. Details of the parallel melt po- High-Throughput Spectroscopic Analysis Setup.An

lymerization in 96-microreactor arrays have been reported experimental setup for an automated acquisition of fluores-
previously®6 Briefly, bisphenol A polycarbonate was cence spectra from the materials in 96-microreactor arrays
prepared by melt polymerization according to well-known is shown in Figure 2B. Fluorescence measurements of
literature method&>2° The starting reaction components polymers in each microreactor were performed through the
included diphenyl carbonate (component A) and bisphenol glass bottom of the microreactors using a white light source,
A (component B) monomers obtained from GE Plastics and a monochromator, a portable spectrofluorometer, and a
a catalyst (NaOH, component C) obtained from Aldrich. The translation stage. The white light source (450-W Xe arc lamp,
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SLM Instruments, Inc., Urbana, IL, model FP-024) was wherei andj are indices of cluster§ andS, respectively;
coupled to the monochromator (SLM Instruments, Inc., Ej is the Euclidean distance between these clusi®sis
model FP-092) for selection of the excitation wavelength the weighting factor (equal to captured percent variance) of
and further focused into one of the arms of a “six-around- thekth principal component; analis the number of principal
one” bifurcated fiber-optic reflection probe (Ocean Optics, components used for multivariate analysis.
Inc., model R400-7-UV/VIS). Emission light from the Calculations of means and standard deviationsEpf
polymeric material in each microreactor was collected when according to eq 1 were performed with a Monte Carlo
the common end of the fiber-optic probe was positioned near simulation program (Crystal Ball, Decisioneering, Inc.,
the bottom of the reactor at an angle°46 the normal to Denver, CO). For these simulations, means and standard
the surface. The second arm of the probe was coupled todeviations of S; and S were initially calculated from
the portable spectrofluorometer (Ocean Optics, Inc., model multiple spectral descriptors of each cluster. Further, both
ST2000) through an in-line optical filter holder (Ocean the mean of each cluster and its standard deviation (assuming
Optics). The holder contained a long-pass optical filter to the normally distributed error) were entered into the program.
block excitation light from entering the spectrofluorometer. Finally, 10 000 iterations were performed on a 700-MHz
The spectrofluorometer was equipped with a 200-slit, personal computer to calculate the mean and standard
600-grooves/mm grating blazed at 400 nm and covering the deviation for a giverE;.
spectral range from 250 to 800 nm with efficiency greater  From a variety of available approaches for cluster analy-
than 30%, and a linear CCD-array detector. Fluorescencesjs36 we selected analysis of Euclidean distances because it
spectra reported here were not corrected by the spectralprovides the information about both the distance between
response of the optical system. clusters and the spread of each cluster. Further, although it
For fluorescence analysis of solid polymers, each micro- js possible to perform calculations of Euclidean distances

reactor array was arranged onXnY translation stage, and  on raw spectra, we performed the PCA first to reduce the
the common end of the fiber optic probe was held stationary noise in the data.

to measure emission spectra. The size of the excitation beam

of the fiber-optic probe was in the range from 1 to 4 mm, Results and Discussion
depending on the probemicroreactor distance. Data acquisi-
tion and automatic control of thé—Y translation stage were

achieved with a computer using a program written in bi 23 : -
. ; isphenol A polycarbonafé: 32 By changing both excitation
LabVIEW (National Instruments, Austin, TX). The program and emission wavelengths, an excitati@mission fluores-

provided gdequate con.trol 0 f the. data acqwsmqn parameterscence map was constructed that revealed different species.
and real-time communication with the translation stage.

. . . By optimizing the excitation wavelength, fluorescence can
Data Processing Algorithms.Analysis of fluorescence yop 9 g

spectra was performed using KaleidaGraph software (Syn-be collected from only certain species, and the fluorescence
ergy Software, Reading, PA) and PLS_Toolbox software signal from interfering species can be greatly rediiédd.

. .. initial experiments, spectral regions were identified from
(Eigenvector Research, Inc., Manson, WA) operated with . o i
. . experimental excitationemission maps that were correlated
Matlab software (The Mathworks Inc., Natick, MA). Prior P b

0 PCA. fl ra Ve 96.mi ; with chemical properties of intere¥t32which were in turn
0 , fiuorescence spectra from Tive So-microreactor o0 1o process conditiofSA typical excitation-emission
arrays were appropriately preprocessed. The preprocessin

Yluorescence map of one of the polymeric compositions is
included a baseline subtraction, normalization of spectra by b POty b

the fl tensity at 500 lecti f presented in Figure 3. It illustrates that while several
€ fuorescence Intensity a nm, selection of an g, rescent species contribute to the fluorescence emission,

appropriate spectral range for the PCA, and mean—centerlngit is straightforward to identify regions for accurate analyte
the spectra. The spectra from the empty and thermocouple-

ntaining microreactor tion 3.1) were exclud d(;1uantitation by selecting certain excitation and emission
containing microreactors (see section 3. ) were exclude conditions. During these initial experiments, an appropriate
from the spectral descriptor analysis.

. . excitation wavelength of 340 nm was selected for preferential
Upon performing the PCA, a spectral descriptor was 9 P

. excitation of species of interest in the polymer.
determined for each fluorescence spectrum. The spectral L
d : . . Determination of Key Process Parameters.For the
escriptor was represented as a vector in PCA space. Thlsdetermination of the kev bprocess parameters and their
vector was described by a unique combination of the yp P

. 7 respective values, fluorescence spectra from five 96-micro-

respective scores of principal components. The spectral . .
: . reactor arrays were collected and processed as described in
descriptors from materials produced under the same process:,

) - . . the Data Processing Algorithms section. The normalized
ing conditions were considered as a clusgan the PCA spectra are presented in Figure 4. The spectral features of
space without the use of automated clustering algorifnis. P P 9 ' P

. the polymeric materials in the microreactors contained a
Each clusterS was represented by its mean and standard . . . .
. . L wealth of information about the chemical properties of
deviation with respect tdth principal component. The

Euclidean distanceE between two clusters of spectral materigls. This information was gxtracted using multivariate

descriptors was calculated as a}naly5|s, sych as PCA. According to the PCA results, the
first two principal components (PCs) accounted f85%

n of the spectral variation among all spectra. Thus, the first

E; :{Z(Wk@(i — S(j))z}lfz (1) two PCs were used for an adequate description of the

fluorescence spectra. Results of the principal components

Characterization Conditions. Fluorescence analysis pro-
vided an adequate selectivity of chemical determinations in
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Figure 3. Typical excitation-emission fluorescence map of solid bisphenol A polycarbonate produced by melt-polymerization.

variables. Figure 6 demonstrates PCA results as a function
of variable volume, ratio A/B, flow rate, and dwell time.
These data illustrate that for two intra-array parameters, such
as the sample volume and ratio A/B, the significant clustering
of spectral descriptors was observed only as a function of
\ the ratio A/B. For two interarray parameters, such as flow
N J rate and dwell time, the clustering of spectral descriptors
. N was insignificant.

0.2 \ Bt We further performed a more detailed analysis in which
4 s the spectral descriptors indizidual 96-microreactor arrays
were considered. The data were analyzed as a function of
catalyst concentration, reaction volume, and ratio A/B at

different flow rates of inert gas and dwell times. Such
Figure 4. Normalized fluorescence spectra of the polymeric analysis evaluated the effect of these process parameters on
matgrlgls made in the 96-microreactor arrays under all experlmentalthe properties of polymerized materials and the reproduc-
conditions. ibility of replicate polymerizations in different 96-micro-

1 . . . reactor arrays. The minimum reaction variability was char-

. acterized by the smallest spread in clustering of spectral
- descriptors. It was found that the variation of flow rate of
inert gas and dwell time affected the reproducibility of

- replicate polymerizations. Changes of reaction volume did
not significantly affect the clustering of spectra for any of

Normalized Fluorescence

400 450 500 550 600 650 700 750
Wavelength (nm)

>

Scores on PC2 (19.37%)

[C]
05

=10
- 204

the interarray conditions. The most pronounced dependence
of spectral features was provided by the variation in the ratio
A/B.

- 40

. ) s This dependence of spectral features on variable levels of
2 15 1 05 0 05 intra-array (ratio A/B and concentration of catalyst C) and
Scores on PC1 (76.34%) interarray (flow rate and dwell time) process parameters is
Figure 5. Results of the principal components analysis of the illustrated in Figure 7. In this Figure, spectral descriptors of
spectra of the polymeric materials made in the 96-microreactor )| materials are presented similar to Figure 5. However, color
filgr?)gsf lég?;;st”g(pe”memal conditions as a function of concentra- codes and shapes are highlighted for materials from only
two representative microreactor arrays. Spectral descriptors
analysis of the spectra from all 96-microreactor arrays as aof polymers in a 96-microreactor array that were polymerized
function of concentration of catalyst C are presented in Figure under an 8 L/min flow rate of inert gas and 10-min dwell
5. This scores plot demonstrates the existence of the majortime are color- and shape-coded in Figure 7A. Spectral
general trend in the spectral descriptors where the variationdescriptors of polymers in another 96-microreactor array that
in scores of both PCs strongly depends on concentration ofwere polymerized undea 6 L/min flow rate of inert gas
component C for all screened process parameters. and 20-min dwell time are color- and shape-coded in Figure
To determine other key process variables besides the7B. Spectral descriptors from the rest of 96-microreactor
concentration of component C that affect performance of the arrays are shown as gray circles. Different colors represent
combinatorial thin-film polymerizations, PCA results were different concentrations of catalyst C. Different shapes of
also analyzed as a function of individual intra- and interarray the markers represent variable ratios A/B. Under certain
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Figure 6. Results of the principal components analysis of the spectra of the polymeric materials made in the 96-microreactor arrays with

variable intra-array (A and B) and interarray (C and D) parameters: (A) volume, (B) ratio A/B, (C) flow rate, and (D) dwell time. Levels:
asterisks, smallest; plus, medium; X, largest. For values, see Table 1.
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Figure 7. Dependence of spectral descriptors on ratio A/B under interarray conditions: (A) 8 L/min flow rate of inert gas and 10-min
dwell time and (B) 6 L/min flow rate of inert gas and 20-min dwell time.

conditions (see Figure 7A), there is lack of sufficient illustrates almost no dependence of spectral descriptors on
discrimination among materials. This is evident from the fact variable levels of reaction volume under different concentra-
that all data points are tightly clustered without significant tions of catalyst C, flow rates, and dwell times for the same
separation. Other process conditions (see Figure 7B) are moréwo microreactor arrays. Thus, the process conditions of
favorable for two reasons: First, the materials are well- primary importance were identified to be the ratio of starting
separated as a function of catalyst concentration. Secondcomponents A/B, concentration of catalyst C, flow rate of
within a certain concentration, materials are further separatedinert gas, and dwell time, whereas reaction volume did not
by the different ratio A/B. For comparison, Figure 8 significantly affect the polymerization performance.
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Figure 8. Dependence of spectral descriptors on reaction volume under interarray conditions: (A) 8 L/min flow rate of inert gas and
10-min dwell time and (B) 6 L/min flow rate of inert gas and 20-min dwell time.
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Figure 9. Results of calculation of Euclidean distances of spectral descriptors in polymer arrays produced under interarray conditions: (A)
8 L/min flow rate of inert gas and 10-min dwell time and (B) 6 L/min flow rate of inert gas and 20-min dwell time. Maximum Euclidean
distance indicates best conditions for material differentiation as a function of concentration of catalyst C.

Table 2. Means of the Euclidean Distances (ED) and

Determination of Optimal Levels of Process Conditions. Standard Deviations (SD) of Spectral Clusters

To determine the optimal levels of the identified process

conditions, a more detailed evaluation was performed. ratio A/B
Euclidean distances between different clusters of spectral 1.0 1.2 14
descriptors and the uncertainty in these distances were concn ED ED ED ED ED ED

computed using eq 1. Calculations were performed betweenarray ofC mean SD mean SD mean SD
spectral descriptors associated with materials produced with 1 0.5 0.303 0.211 0.121 0.0872 0.699 0.511

different amounts of catalyst and ratios A/B in all 96- % 8-%75 8-125 8;23 8-07(251 8-518 833&?
i ; 271 0.1 . 17 517 0.
m!croreactor arrays. Results of_th_ese_ calcula_tlons for all 4 0234 0149 0570 0.165 0581 0391
microreactor arrays used for optimization studies are sum-
marized in Table 2 2 0.5 0.687 0.499 0.199 0.146 0.297 0.218
_ _ : . 1 0526 0375 0178 0.131 0279 0.201
Figure 9 illustrates two representative plots of the results 2 0.504 0.357 0.282 0.167 0.236 0.161
of calculation of the Euclidean distance of spectral descriptors 4 0.493 0.347 0373 0170 0.271 0.173
shown in Figure 7. As discussed in the Approach For High- 3 0.5 0.0830 0.0582 0.170 0.122 0.454 0.337
Throughput Multiparameter Reaction Optimization section, 1 00683 00467 0.146 0.101 0385 0.281
the largest Euclidean distances indicate the best conditions 2 0132 0.0694 ~0.521 0.158 0.627 0.389
¢ g ol diff o " he b . di 4 0.284 0.0982 0.768 0.189 0.741 0.385
or material differentiation. Thus, the best interarray condi- 05 0149 0107 0117 00842 0.403 0.295
tions were found toba b6 L/m!n flow rate of inert gas and 1 0164 0113 0.129 00836 0410 0297
20-min dwell time. The best intra-array conditions were a 2 0.116 0.076 0.190 0.117 0.388 0.265
combination of the catalyst concentration ef2equiv and 4 0.173 0.108 0.384 0.125 0.553 0.333
ratio A/B of 1.2-1.4 (Figure 9B). Results for the reaction 5 0.5 0.116 0.0848 0.139 0.103 0.534 0.392
variability for these microreactor arrays are presented in % 8-%32 8-(1)(9)24 8-%%2 8-236 8-2’255 8-;88
Figure 10. The smallest relative standard deviation (RSD) 4 0177 0114 02363 0168 0419 0278

of spectral features indicates the best reaction reproducibility.
This figure illustrates that the smallest RSD was achieved Spectral Features Under Nonoptimized And Optimized

with the conditions of microreactor array processed under aProcess Conditions.Optimization of process parameters
6 L/min flow rate of inert gas and 20-min dwell time and a resulted not only in the improved reproducibility of replicate
ratio A/B of 1.2 over the concentration range of catalyst from polymerization reactions and improved discrimination be-
2to 4. tween materials with different levels of catalyst C, but also
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Figure 10. Results of calculation of reaction variability as %RSD of PC1 and PC2 scores of spectral descriptors in polymer arrays produced
under interarray conditions: (A) 8 L/min flow rate of inert gas and 10-min dwell time and (B) 6 L/min flow rate of inert gas and 20-min
dwell time. Smallest relative standard deviation (RSD) of spectral features indicates best reaction reproducibility.
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Figure 11. Typical material variability under reaction conditions: (A) 8 L/min flow rate of inert gas and 10-min dwell time and (B) 6
L/min flow rate of inert gas and 20-min dwell time. Intra-array materials parameters: ratic=AIR, reaction volume= 200 uL.
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Figure 12. Effects of (A) reaction volume and (B) ratio A/B under optimized reaction conditions of 6 L/min flow rate of inert gas and
20-min dwell time. Intra-array materials parameters: (A) ratio A#B.0, concentration of catalyst [G} 1.0; (B) reaction volume= 200
uL, concentration of catalyst [CF 1.0.

in the improved homogeneity of polymers within individual properties was found upon changing of the reaction volume
microreactors. Typical examples of fluorescence spectra fromunder optimized reaction conditions, as illustrated in Figure
polymer materials produced in replicate microreactors under 12A. In contrast, the variation in ratio A/B had a pronounced
nonoptimized and optimized conditions are presented in effect (see Figure 12B), as predicted by the descriptor
Figure 11. This comparison is performed for materials with analysis.
increasing levels of catalyst C and constant levels of ratio  The high spatial polymer homogeneity in individual
A/B and volume. These plots illustrate that upon finding the mijcroreactors is another powerful indicator of the reproduc-
optimal reaction conditions, the reproducibility of replicate ible polymerization process on the combinatorial scale. This
polymerization reactions is improved. In addition, the variability is determined as differences in measured fluo-
discrimination between materials of increasing concentration rescence spectra that are caused by the spatial variation in
of component C is also improved, as evidenced by the morethe chemical composition in the formed polymer within each
reproducible fluorescence spectra under identical processmicroreactor. Figure 13 illustrates the fluorescence spectra
conditions. of polymers within individual microreactors under non-
Under the optimized reaction conditions, the relative optimized and optimized polymerization conditions. The
importance of variable reaction volume and reaction ratio evaluations were performed by measuring multiple regions
A/B was confirmed. No significant difference in materials of polymer in each microreactor. The small beam sizé-(
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